15.网络爬虫—selenium验证码破解
作者:mmseoamin日期:2023-12-13

网络爬虫—selenium验证码破解

  • 一·selenium验证码破解
    • 二·破解平台
      • 打码平台超级鹰文识别
      • 基于人工智能的定制化识别平台 —图灵
      • 三·英文数字验证码破解
        • selenium破解验证码快捷登录古诗文网
        • 四·滑动验证码破解
          • selenium滑动验证码破解网易网盾测试案例
          • 五·总结
          • 六·后记

            前言

            🏘️🏘️个人简介:以山河作礼。

            🎖️🎖️:Python领域新星创作者,CSDN实力新星认证

            📝​📝第一篇文章《1.认识网络爬虫》获得全站热榜第一,python领域热榜第一。

            🧾 🧾第四篇文章《4.网络爬虫—Post请求(实战演示)》全站热榜第八。

            🧾 🧾第八篇文章《8.网络爬虫—正则表达式RE实战》全站热榜第十二。

            🧾 🧾第十篇文章《10.网络爬虫—MongoDB详讲与实战》全站热榜第八,领域热榜第二

            🧾 🧾第十三篇文章《13.网络爬虫—多进程详讲(实战演示)》全站热榜第十二。

            🎁🎁《Python网络爬虫》专栏累计发表十四篇文章,上榜五篇。欢迎免费订阅!欢迎大家一起学习,一起成长!!

            💕💕悲索之人烈焰加身,堕落者不可饶恕。永恒燃烧的羽翼,带我脱离凡间的沉沦。

            一·selenium验证码破解

            🧾 🧾网络爬虫是一种自动化程序,用于从Web页面中提取数据。然而,有些网站为了防止爬虫程序抓取数据,会加入一些验证码,使得程序无法自动化地完成数据采集任务。为了解决这个问题,我们可以使用selenium来破解验证码。

            🧾 Selenium是一个开源的自动化测试工具,它可以模拟用户在浏览器中的操作,包括点击、输入等。使用selenium可以模拟用户手动输入验证码,从而实现验证码的破解

            二·破解平台

            首先我们介绍两个第三方破解平台:

            第一款第三方打码平台是 :超级鹰

            帮助开发者解决图像验证码的识别问题。它采用了最先进的图像识别技术,可以快速准确地识别各种形式的图像验证码,如数字、字母、中文、滑动拼图

            第二款第三方平台是 :图灵

            基于人工智能的定制化识别平台 可用于识别包括英数类型,中文类型,滑块类型等验证码,

            打码平台超级鹰文识别

            • 超级鹰是一款第三方打码平台,可以帮助开发者解决图像验证码的识别问题。它采用了最先进的图像识别技术,可以快速准确地识别各种形式的图像验证码,如数字、字母、中文、滑动拼图等。
            • 超级鹰提供了简单易用的API接口,开发者只需调用接口即可将验证码提交给超级鹰进行识别,并获得识别结果。此外,超级鹰还提供了多种识别方式,如手动识别、自动识别、多人协作等,可以满足不同的识别需求。
            • 超级鹰的图文识别功能可以识别包含文字和图片的验证码,比如滑动拼图验证码。它可以先将验证码图片拆分成多个小块,再对每个小块进行识别,最后将结果合并起来得到整个验证码的识别结果。这种识别方式可以大大提高验证码的识别准确率。

              🎯1.首先我们登录注册,方便我们后面使用

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第1张

              🎯2.选择我们需要的价格体系,待会也会用到

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第2张

              🎯3.Python语言Demo下载

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第3张

              🎯4.获取软件Key和软件ID

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第4张

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第5张

              基于人工智能的定制化识别平台 —图灵

              🧾 🧾主页如下,包含各种验证码识别

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第6张

              🧾 识别接口说明

              ① 识别接口

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第7张

              ② 识别请求参数说明

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第8张

              ③ 识别返回结果说明

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第9张

              python API调用代码:

              import base64
              import json
              import requests
              # 复制以下代码,只需填入自己的账号密码、待识别的图片路径即可。
              # 关于ID:选做识别的模型ID。
              def b64_api(username, password, img_path, ID):
                  with open(img_path, 'rb') as f:
                      b64_data = base64.b64encode(f.read())
                  b64 = b64_data.decode()
                  data = {"username": username, "password": password, "ID": ID, "b64": b64, "version": "3.1.1"}
                  data_json = json.dumps(data)
                  result = json.loads(requests.post("http://www.tulingcloud.com/tuling/predict", data=data_json).text)
                  return result
              if __name__ == "__main__":
                  img_path = r"C:/Users/Administrator/Desktop/file.jpg"
                  result = b64_api(username="你的账号", password="你的密码", img_path=img_path, ID="你选用的模型ID(8位数字)")
                  print(result)
              

              到此为止,我们认识了两种用于破解验证码的平台,我们现在实战操作,方便大家理解学习

              三·英文数字验证码破解

              selenium破解验证码快捷登录古诗文网

              🧾 我们来看一下我们的目标

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第10张

              🎯1.使用selenium自动化登录目标网站

              from selenium import webdriver
              from selenium.webdriver.chrome.service import Service
              from selenium.webdriver.common.by import By
              service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
              driver = webdriver.Chrome(service=service)
              url = 'https://so.gushiwen.cn/user/login.aspx?from=http://so.gushiwen.cn/user/collect.aspx'
              driver.get(url)
              

              🎯2.通过行为链,输入账号密码,因为我没有注册,所以随便输入的,不过影响不大,我们需要的是输入正确的验证码。

              # 账号输入
              driver.find_element(By.ID, 'email').send_keys('xxxxx')
              # 密码输入
              driver.find_element(By.ID, 'pwd').send_keys('xxxx')
              

              🎯3.然后获取验证码的照片到本地,方便我们待会调用接口来破解。

              img_code = driver.find_element(By.ID, 'imgCode')
              img_code.screenshot('img.png')  # 保存成图片
              

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第11张

              🎯4.调用接口,来破解验证码。

              from chaojiying import Chaojiying_Client
              chaojiying = Chaojiying_Client('xxxx', 'xxxxx', '96001')  # 用户中心>>软件ID 生成一个替换 96001
              image = open('img.png', 'rb')  # 本地图片文件路径 来替换 a.jpg 有时WIN系统须要//
              pic_str = (chaojiying.PostPic(image.read(), 1004)['pic_str'])
              image.close()
              driver.find_element(By.ID, 'code').send_keys(pic_str)
              

              🧾 🧾我们的目标就完成了,是不是很简单,后期把账号密码换成注册过的,就能实现自动登录和验证了

              完整代码:

              from selenium import webdriver
              from selenium.webdriver.chrome.service import Service
              from selenium.webdriver.common.by import By
              service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
              driver = webdriver.Chrome(service=service)
              url = 'https://so.gushiwen.cn/user/login.aspx?from=http://so.gushiwen.cn/user/collect.aspx'
              driver.get(url)
              # 账号输入
              driver.find_element(By.ID, 'email').send_keys('xxxxx')
              # 密码输入
              driver.find_element(By.ID, 'pwd').send_keys('xxxx')
              # 获取验证码
              img_code = driver.find_element(By.ID, 'imgCode')
              img_code.screenshot('img.png')  # 保存成图片
              from chaojiying import Chaojiying_Client
              chaojiying = Chaojiying_Client('*****', '*****', ' 96001')  # 用户中心>>软件ID 生成一个替换 96001
              image = open('img.png', 'rb')  # 本地图片文件路径 来替换 a.jpg 有时WIN系统须要//
              pic_str = (chaojiying.PostPic(image.read(), 1004)['pic_str'])
              image.close()
              driver.find_element(By.ID, 'code').send_keys(pic_str)
              input()
              

              四·滑动验证码破解

              selenium滑动验证码破解网易网盾测试案例

              🧾 我们来看一下我们的目标

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第12张

              🎯1.思路和破解英数验证码一样,使用selenium自动打开网址,然后通过行为链点击到上图这个页面。

              service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
              driver = webdriver.Chrome(service=service)
              driver.set_window_size(1100, 800)  # 将浏览器窗口大小设置为宽1100像素,高800像素。
              url = 'https://dun.163.com/trial/sense'
              driver.get(url)
              print(driver.page_source)
              wait = WebDriverWait(driver, 20)  # 等待20秒,有数据就进行操作,没有就报错
              wait.until(PE((By.XPATH, '/html/body/main/div[1]/div/div[2]/div[2]/ul/li[2]'))).click()  # 点击可疑用户-滑动拼图
              js = f'window.scrollTo(0,{300})'
              driver.execute_script(js)  # 将当前页面滚动到垂直方向上300像素的位置。
              

              🎯2.然后我们对出现的验证码进行截图:

              # 点击验证码位置,方便弹出验证码图框
              wait.until(PE((By.XPATH,
                             '/html/body/main/div[1]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/div[3]/div/div/div[1]/div[1]'))).click()
              sleep(3)  # 休眠三秒,方便我们截图,防止验证码出现不及时
              # 截图网页
              driver.save_screenshot("html.png")
              # 剪切滑动部分
              img = Image.open("html.png")
              # 剪切验证码的位置   图片的左上角和右下角 x和y轴
              cropped = img.crop((563, 380, 1012, 608))
              # 保存剪切的验证码照片
              cropped.save("yzm.png")
              

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第13张

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第14张

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第15张

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第16张

              🎯3.调用ApI接口对截取的验证码进行识别

              # api接口
              def b64_api(username, password, img_path, ID):  # 账户  密码  照片 ID
                  with open(img_path, 'rb') as f:
                      b64_data = base64.b64encode(f.read())
                  b64 = b64_data.decode()
                  data = {"username": username, "password": password, "ID": ID, "b64": b64, "version": "3.1.1"}
                  data_json = json.dumps(data)
                  result = json.loads(requests.post("http://www.tulingtech.xyz/tuling/predict", data=data_json).text)
                  return result
              

              15.网络爬虫—selenium验证码破解,在这里插入图片描述,第17张

              🎯4.selenium 滑动线性 更加模拟人的行为进行点击

              # selenium 滑动线性  更加模拟人去操作
              def get_move_track(gap):
                  track = []  # 移动轨迹
                  current = 0  # 当前位移
                  # 减速阈值
                  mid = gap * 4 / 5  # 前4/5段加速 后1/5段减速
                  t = 0.2  # 计算间隔
                  v = 0  # 初速度
                  while current < gap:
                      if current < mid:
                          a = 5  # 加速度为+5
                      else:
                          a = -5  # 加速度为-5
                      v0 = v  # 初速度v0
                      v = v0 + a * t  # 当前速度
                      move = v0 * t + 1 / 2 * a * t * t  # 移动距离
                      current += move  # 当前位移
                      track.append(round(move))  # 加入轨迹
                  return track
              

              🎯5.讲破解出的数据交给代码,让他帮助我们输入并且通过行为链来拖动滑块填充拼图,完成验证码的验证。

              x = int(result['data']['滑块']['X坐标值'])
              q = int(result['data']['缺口']['X坐标值'])
              ranges = int((q - x) * 0.68)
              move_track = get_move_track(ranges)  # 将结果交给滑动线性函数
              # 滑动代码
              element = wait.until(PE((By.CLASS_NAME, 'yidun_jigsaw')))  # 滑块
              ActionChains(driver).click_and_hold(element).perform()  # 通过行为链,按住它,然后执行
              for i in move_track:  # 循环每次滑动的距离
                  # 执行移动
                  ActionChains(driver).move_by_offset(i, 0).perform()
              ActionChains(driver).release().perform()  # 松开按键,完成滑动
              

              运行结果:

              智能无感知验证码_智能验证码_验证码API_在线体验

              完整代码:

              import base64
              import json
              from time import sleep
              import requests
              from PIL import Image  # pillow
              from selenium import webdriver
              from selenium.webdriver.chrome.service import Service
              from selenium.webdriver.common.action_chains import ActionChains
              from selenium.webdriver.common.by import By
              from selenium.webdriver.support.expected_conditions import presence_of_element_located as PE
              from selenium.webdriver.support.ui import WebDriverWait
              service = Service(executable_path='D:\chorm\chromedriver_win32/chromedriver.exe')
              driver = webdriver.Chrome(service=service)
              driver.set_window_size(1100, 800)  # 将浏览器窗口大小设置为宽1100像素,高800像素。
              url = 'https://dun.163.com/trial/sense'
              driver.get(url)
              print(driver.page_source)
              wait = WebDriverWait(driver, 20)  # 等待20秒,有数据就进行操作,没有就报错
              wait.until(PE((By.XPATH, '/html/body/main/div[1]/div/div[2]/div[2]/ul/li[2]'))).click()  # 点击可疑用户-滑动拼图
              js = f'window.scrollTo(0,{300})'
              driver.execute_script(js)  # 将当前页面滚动到垂直方向上300像素的位置。
              # 点击验证码位置,方便弹出验证码图框
              wait.until(PE((By.XPATH,
                             '/html/body/main/div[1]/div/div[2]/div[2]/div[1]/div[2]/div[1]/div/div[2]/div[3]/div/div/div[1]/div[1]'))).click()
              sleep(3)  # 休眠三秒,方便我们截图,防止验证码出现不及时
              # 截图网页
              driver.save_screenshot("html.png")
              # 剪切滑动部分
              img = Image.open("html.png")
              # 剪切验证码的位置   图片的左上角和右下角 x和y轴
              cropped = img.crop((563, 380, 1012, 608))
              # 保存剪切的验证码照片
              cropped.save("yzm.png")
              # 调用api接口对照片验证码进行识别
              def b64_api(username, password, img_path, ID):  # 账户  密码  照片 ID
                  with open(img_path, 'rb') as f:
                      b64_data = base64.b64encode(f.read())
                  b64 = b64_data.decode()
                  data = {"username": username, "password": password, "ID": ID, "b64": b64, "version": "3.1.1"}
                  data_json = json.dumps(data)
                  result = json.loads(requests.post("http://www.tulingtech.xyz/tuling/predict", data=data_json).text)
                  return result
              # 78915616
              result = b64_api('****', '*****', "yzm.png", '78915616')
              # 输出滑块和缺口的位置参数
              print(result)
              # selenium 滑动线性  更加模拟人去操作
              def get_move_track(gap):
                  track = []  # 移动轨迹
                  current = 0  # 当前位移
                  # 减速阈值
                  mid = gap * 4 / 5  # 前4/5段加速 后1/5段减速
                  t = 0.2  # 计算间隔
                  v = 0  # 初速度
                  while current < gap:
                      if current < mid:
                          a = 5  # 加速度为+5
                      else:
                          a = -5  # 加速度为-5
                      v0 = v  # 初速度v0
                      v = v0 + a * t  # 当前速度
                      move = v0 * t + 1 / 2 * a * t * t  # 移动距离
                      current += move  # 当前位移
                      track.append(round(move))  # 加入轨迹
                  return track
              x = int(result['data']['滑块']['X坐标值'])
              q = int(result['data']['缺口']['X坐标值'])
              ranges = int((q - x) * 0.68)
              move_track = get_move_track(ranges)  # 将结果交给滑动线性函数
              # 滑动代码
              element = wait.until(PE((By.CLASS_NAME, 'yidun_jigsaw')))  # 滑块
              ActionChains(driver).click_and_hold(element).perform()  # 通过行为链,按住它,然后执行
              for i in move_track:  # 循环每次滑动的距离
                  # 执行移动
                  ActionChains(driver).move_by_offset(i, 0).perform()
              ActionChains(driver).release().perform()  # 松开按键,完成滑动
              input()
              

              五·总结

              📌📌使用selenium破解验证码需要模拟用户操作,包括手动输入验证码和提交表单等。验证码的设计越来越复杂,破解难度也越来越大。因此,在使用selenium破解验证码时,需要根据具体情况选择合适的方法

              六·后记

              👉👉本专栏所有文章是博主学习笔记,仅供学习使用,爬虫只是一种技术,希望学习过的人能正确使用它。

              博主也会定时一周三更爬虫相关技术更大家系统学习,如有问题,可以私信我,没有回,那我可能在上课或者睡觉,写作不易,感谢大家的支持!!🌹🌹🌹