什么是范式?
范式是数据库设计时遵循的一种规范,不同的规范要求遵循不同的范式。
最常用的三大范式
第一范式(1NF):属性不可分割,即每个属性都是不可分割的原子项。(实体的属性即表中的列)
第二范式(2NF):满足第一范式;且不存在部分依赖,即非主属性必须完全依赖于主属性。(主属性即主键;完全依赖是针对于联合主键的情况,非主键列不能只依赖于主键的一部分)
第三范式(3NF):满足第二范式;且不存在传递依赖,即非主属性不能与非主属性之间有依赖关系,非主属性必须直接依赖于主属性,不能间接依赖主属性。(A -> B, B ->C, A -> C)
举例说明3NF:
1NF
属性不可再分,即表中的每个列都不可以再进行拆分。
如下学生信息表(student):
id、name(姓名)、sex_code(性别代号)、sex_desc(性别描述)、contact(联系方式)
primary key(id)
如果在查询学生表时经常用到学生的电话号,则应该将联系方式(contact)这一列分为电话号(phone)和地址(address)两列,这样才符合第一范式。
修改使表满足1NF后:
判断表是否符合第一范式,列是否可以再分,得看需求,如果将电话号和地址分开才能满足查询等需求时,那之前的表设计就是不满足1NF的,如果电话号和地址拼接作为一个字段也可以满足查询、存储等需求时,那它就满足1NF。
2NF
在满足1NF的前提下,表中不存在部分依赖,非主键列要完全依赖于主键。(主要是说在联合主键的情况下,非主键列不能只依赖于主键的一部分)
如下学生成绩表(score):
stu_id(学生id)、kc_id(课程id)、score(分数)、kc_name(课程名)
primary key(stu_id, kc_id)
课程表(kc) primary key(kc_id)
将原来的成绩表(score)拆分为成绩表(score)和课程表(kc),而且两个表都符合2NF。
3NF:
在满足2NF的前提下,不存在传递依赖。(A -> B, B -> C, A->C)
如下学生信息表(student):
primary key(id)
表中sex_desc依赖于sex_code,而sex_code依赖于id(主键),从而推出sex_desc依赖于id(主键);sex_desc不直接依赖于主键,而是通过依赖于非主键列而依赖于主键,属于传递依赖,不符合3NF。
修改表使满足3NF后:
学生表(student) primary key(id)
性别代码表(sexcode) primary key(sex_code)
将原来的student表进行拆分后,两个表都满足3NF。
什么样的表越容易符合3NF?
非主键列越少的表。(1NF强调列不可再分;2NF和3NF强调非主属性列和主属性列之间的关系)
如代码表(sexcode),非主键列只有一个sex_desc;
或者将学生表的主键设计为primary key(id,name,sex_code,phone),这样非主键列只有address,更容易符合3NF。
ps:
除了三大范式外,还有BC范式和第四范式,但其规范过于严苛,在生产中往往使用不到。
范式是符合某一种级别的关系模式的集合。构造数据库必须遵循一定的规则。在关系数据库中,这种规则就是范式。
所以在平时工作中,我们通常是将范式和反范式相互结合使用。
从物理结构上可以分为聚集索引和非聚集索引两类:
从应用上可以划分为一下几类:
先来说说**优点:**创建索引可以大大提高系统的性能。
通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
既然增加索引有如此多的优点,为什么不对表中的每一个列都创建一个索引呢?这是因为索引也是有缺点的:
创建和维护索引需要耗费时间,这种时间随着数据量的增加而增加,这样就降低了数据的维护速度。
索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间。如果要建立聚簇索引,那么需要的空间就会更大。
选择唯一性索引;
为常作为查询条件的字段建立索引;
为经常需要排序、分组和联合操作的字段建立索引;
限制索引的数目;
小表不建议索引(如数量级在百万以内);
尽量使用数据量少的索引;
删除不再使用或者很少使用的索引。
索引的数据结构和具体存储引擎的实现有关,MySQL中常用的是 Hash 和 B+树 索引。
Hash
B+ Tree
B 树非叶子结点和叶子结点都存储数据,因此查询数据时,时间复杂度最好为 O(1),最坏为 O(log n)。而 B+ 树只在叶子结点存储数据,非叶子结点存储关键字,且不同非叶子结点的关键字可能重复,因此查询数据时,时间复杂度固定为 O(log n)。
B+ 树叶子结点之间用链表相互连接,因而只需扫描叶子结点的链表就可以完成一次遍历操作,B 树只能通过中序遍历。
B+ 树减少了 IO 次数。
B+ 树查询效率更稳定
B+ 树更加适合范围查找
覆盖索引(covering index)指一个查询语句的执行只用从索引中就能够取得,不必从数据表中读取。 也可以称之为实现了索引覆盖。 如果一个索引包含了(或覆盖了)满足查询语句中字段与条件的数据就叫做覆盖索引。 当一条查询语句符合覆盖索引条件时,sql只需要通过索引就可以返回查询所需要的数据,这样避免了查到索引后再返回表操作,减少I/O提高效率
索引下推(Index condition pushdown) 简称 ICP,在 Mysql 5.6 版本上推出的一项用于优化查询的技术。
在不使用索引下推的情况下,在使用非主键索引进行查询时,存储引擎通过索引检索到数据,然后返回给 MySQL 服务器,服务器判断数据是否符合条件。
而有了索引下推之后,如果存在某些被索引列的判断条件时,MySQL 服务器将这一部分判断条件传递给存储引擎,然后由存储引擎通过判断索引是否符合 MySQL 服务器传递的条件,只有当索引符合条件时才会将数据检索出来返回给 MySQL 服务器。
索引条件下推优化可以减少存储引擎查询基础表的次数,也可以减少 MySQL 服务器从存储引擎接收数据的次数。
1)InnoDB 支持事务,而 MyISAM 不支持。
2)InnoDB 支持外键,而 MyISAM 不支持。因此将一个含有外键的 InnoDB 表 转为 MyISAM 表会失败。
3)InnoDB 和 MyISAM 均支持 B+ Tree 数据结构的索引。但 InnoDB 是聚集索引,而 MyISAM 是非聚集索引。
4)InnoDB 不保存表中数据行数,执行 select count(*) from table 时需要全表扫描。而 MyISAM 用一个变量记录了整个表的行数,速度相当快(注意不能有 WHERE 子句)。
**那为什么 InnoDB 没有使用这样的变量呢?**因为InnoDB的事务特性,在同一时刻表中的行数对于不同的事务而言是不一样的。
5)InnoDB 支持表、行(默认)级锁,而 MyISAM 支持表级锁。
InnoDB 的行锁是基于索引实现的,而不是物理行记录上。即访问如果没有命中索引,则也无法使用行锁,将要退化为表锁。
6)InnoDB 必须有唯一索引(如主键),如果没有指定,就会自动寻找或生产一个隐藏列 Row_id 来充当默认主键,而 Myisam 可以没有主键。
自增 ID 可以保证每次插入时 B+ 树索引是从右边扩展的,因此相比自定义 ID (如 UUID)可以避免 B+ 树的频繁合并和分裂。如果使用字符串主键和随机主键,会使得数据随机插入,效率比较差。
页(Page)
区(Extent)
段(Segment)
脏读、幻读、不可重复读。
脏读:一个事务读取到另一个事务尚未提交的数据。 事务 A 读取事务 B 更新的数据,然后 B 回滚操作,那么 A 读取到的数据是脏数据。
不可重复读:一个事务中两次读取的数据的内容不一致。 事务 A 多次读取同一数据,事务 B 在事务 A 多次读取的过程中,对数据作了更新并提交,导致事务 A 多次读取同一数据时,结果 不一致。
幻读:一个事务中两次读取的数据量不一致。 系统管理员 A 将数据库中所有学生的成绩从具体分数改为 ABCDE 等级,但是系统管理员 B 就在这个时候插入了一条具体分数的记录,当系统管理员 A 改结束后发现还有一条记录没有改过来,就好像发生了幻觉一样,这就叫幻读。
不可重复读和幻读很容易混淆,不可重复读侧重于修改,幻读侧重于新增或删除。解决不可重复读的问题只需要锁住满足条件的行,解决幻读需要锁表。
串行化的隔离级别最高,读未提交的级别最低,级别越高,则执行效率就越低,所以在选择隔离级别时应该结合实际情况。
MySQL 支持以上四种隔离级别,默认为 Repeatable read (可重复读);而 Oracle 只支持 Serializeble(串行化) 级别和 Read committed(读已提交) 两种,其中默认为读已提交。
当数据库有并发事务的时候,可能会产生数据的不一致,这时候需要一些机制来保证访问的次序,锁机制就是这样的一个机制。即锁的作用是解决并发问题。
从锁的粒度划分,可以将锁分为表锁、行锁以及页锁。
行级锁:是锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。
行级锁开销大,加锁慢,且会出现死锁。但锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
表级锁:是粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。
页级锁:是粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折中的页级,一次锁定相邻的一组记录。开销和加锁时间界于表锁和行锁之间,会出现死锁。锁定粒度界于表锁和行锁之间,并发度一般。
从使用性质划分,可以分为共享锁、排它锁以及更新锁。
共享锁(Share Lock):S 锁,又称读锁,用于所有的只读数据操作。
S 锁并非独占,允许多个并发事务对同一资源加锁,但加 S 锁的同时不允许加 X 锁,即资源不能被修改。S 锁通常读取结束后立即释放,无需等待事务结束。
排他锁(Exclusive Lock):X 锁,又称写锁,表示对数据进行写操作。
X 锁仅允许一个事务对同一资源加锁,且直到事务结束才释放,其他任何事务必须等到 X 锁被释放才能对该页进行访问。使用 select * from table_name for update; 语句产生 X 锁。
更新锁:U 锁,用来预定要对资源施加 X 锁,允许其他事务读,但不允许再施加 U 锁或 X 锁。
当被读取的页将要被更新时,则升级为 X 锁,U 锁一直到事务结束时才能被释放。故 U 锁用来避免使用共享锁造成的死锁现象。
从主观上划分,又可以分为乐观锁和悲观锁。
乐观锁(Optimistic Lock):顾名思义,从主观上认定资源是不会被修改的,所以不加锁读取数据,仅当更新时用版本号机制等确认资源是否被修改。
乐观锁适用于多读的应用类型,可以系统提高吞吐量。
悲观锁(Pessimistic Lock):正如其名,具有强烈的独占和排它特性,每次读取数据时都会认为会被其它事务修改,所以每次操作都需要加上锁
1)在 Read Uncommitted 级别下,读取数据不需要加共享锁,这样就不会跟被修改的数据上的排他锁冲突;
2)在 Read Committed 级别下,读操作需要加共享锁,但是在语句执行完以后释放共享锁;
3)在 Repeatable Read 级别下,读操作需要加共享锁,但是在事务提交之前并不释放共享锁,也就是必须等待事务执行完毕以后才释放共享锁;
4)在 SERIALIZABLE 级别下,限制性最强,因为该级别锁定整个范围的键,并一直持有锁,直到事务完成。
快照读 就是读取的是快照数据,不加锁的简单 Select 都属于快照读。
SELECT * FROM player WHERE ...
当前读 就是读的是最新数据,而不是历史的数据。加锁的 SELECT,或者对数据进行增删改都会进行当前读。
SELECT * FROM player LOCK IN SHARE MODE; SELECT FROM player FOR UPDATE; INSERT INTO player values ... DELETE FROM player WHERE ... UPDATE player SET ...
MVCC 的英文全称是 Multiversion Concurrency Control,中文意思是多版本并发控制,可以做到读写互相不阻塞,主要用于解决不可重复读和幻读问题时提高并发效率。
其原理是通过数据行的多个版本管理来实现数据库的并发控制,简单来说就是保存数据的历史版本。可以通过比较版本号决定数据是否显示出来。读取数据的时候不需要加锁可以保证事务的隔离效果。
视图的特点如下:
视图的操作包括创建视图,查看视图,删除视图和修改视图。
视图根本用途:简化sql查询,提高开发效率。如果说还有另外一个用途那就是兼容老的表结构。
下面是视图的常见使用场景:
性能。数据库必须把视图的查询转化成对基本表的查询,如果这个视图是由一个复杂的多表查询所定义,那么,即使是视图的一个简单查询,数据库也把它变成一个复杂的结合体,需要花费一定的时间。
修改限制。当用户试图修改视图的某些行时,数据库必须把它转化为对基本表的某些行的修改。事实上,当从视图中插入或者删除时,情况也是这样。对于简单视图来说,这是很方便的,但是,对于比较复杂的视图,可能是不可修改的
这些视图有如下特征:1.有UNIQUE等集合操作符的视图。2.有GROUP BY子句的视图。3.有诸如AVG\SUM\MAX等聚合函数的视图。 4.使用DISTINCT关键字的视图。5.连接表的视图(其中有些例外)
优点
缺点
使用场景
在MySQL数据库中有如下六种触发器:
数据定义语言DDL(Data Ddefinition Language)CREATE,DROP,ALTER
主要为以上操作 即对逻辑结构等有操作的,其中包括表结构,视图和索引。
数据查询语言DQL(Data Query Language)SELECT
这个较为好理解 即查询操作,以select关键字。各种简单查询,连接查询等 都属于DQL。
数据操纵语言DML(Data Manipulation Language)INSERT,UPDATE,DELETE
主要为以上操作 即对数据进行操作的,对应上面所说的查询操作 DQL与DML共同构建了多数初级程序员常用的增删改查操作。而查询是较为特殊的一种 被划分到DQL中。
数据控制功能DCL(Data Control Language)GRANT,REVOKE,COMMIT,ROLLBACK
主要为以上操作 即对数据库安全性完整性等有操作的,可以简单的理解为权限控制等。
SELECT
FROM
JOIN
ON
WHERE
GROUP BY
HAVING
UNION : 将多个查询结果合并(默认去掉重复的记录)
ORDER BY
LIMIT
SQL 约束有哪几种?
交叉连接(CROSS JOIN)
内连接(INNER JOIN)
外连接(LEFT JOIN/RIGHT JOIN)
联合查询(UNION与UNION ALL)
全连接(FULL JOIN)
交叉连接(CROSS JOIN)
SELECT * FROM A,B(,C)或者SELECT * FROM A CROSS JOIN B (CROSS JOIN C) #没有任何关联条件,结果是笛卡尔积,结果集会很大,没有意义,很少使用内连接(INNER JOIN)SELECT * FROM A,B WHERE A.id=B.id或者SELECT * FROM A INNER JOIN B ON A.id=B.id多表中同时符合某种条件的数据记录的集合,INNER JOIN可以缩写为JOIN复制代码
内连接分为三类
外连接(LEFT JOIN/RIGHT JOIN)
联合查询(UNION与UNION ALL)
SELECT * FROM A UNION SELECT * FROM B UNION
全连接(FULL JOIN)
SELECT * FROM A LEFT JOIN B ON A.id=B.id UNIONSELECT * FROM A RIGHT JOIN B ON A.id=B.id复制代码
主从复制是用来建立一个与主数据库完全一样的数据库环境,即从数据库。主数据库一般是准实时的业务数据库。
一主一从或一主多从
在主库的请求压力非常大时,可通过配置一主多从复制架构实现读写分离,把大量对实时性要求不是很高的请求通过负载均衡分发到多个从库上去读取数据,降低主库的读取压力。而且在主库出现宕机时,可将一个从库切换为主库继续提供服务。
主主复制
双主复制架构适用于需要进行主从切换的场景。 两个数据库互为主从,当主库宕机恢复后,由于它还是原来从库(现在主库)的从机,所以它还是会复制新的主库上的数据。那么无论主库的角色怎么切换,原来的主库都不会脱离复制环境。
**多主一从(**5.7 开始支持)
联级复制
因为每个从库在主库上都会有一个独立的 Binlog Dump 线程来推送 binlog 日志,所以随着从库数量的增加,主库的 IO 压力和网络压力也会随之增加,这时,联级复制架构应运而生。
联级复制架构只是在一主多从的基础上,再主库和各个从库之间增加了一个二级主库 Master2,这个二级主库仅仅用来将一级主库推送给它的 Binlog 日志再推送给各个从库,以此来减轻一级主库的推送压力。
数据库有个 binlog 二进制文件,记录了数据可执行的所有 SQL 语句。主从同步的目标就是把主数据库的 binlog 文件中的 SQL 语句复制到从数据库,让其在从数据的 relaylog 文件中再执行一次这些 SQL 语句即可。
具体实现需要三个线程:
binlog 输出线程:每当有从库连接到主库的时候,主库都会创建一个线程然后发送 binlog内 容到从库。
在从库里,当复制开始的时候,从库就会创建两个线程进行处理:
从库 IO 线程:当 START SLAVE 语句在从库开始执行之后,从库创建一个 IO 线程,该线程连接到主库并请求主库发送 binlog 里面的更新记录到从库上。从库 IO 线程读取主库的 binlog 输出线程发送的更新并拷贝这些更新到本地文件,其中包括 relaylog 文件。
从库 SQL 线程:从库创建一个 SQL 线程,这个线程读取从库 IO 线程写到 relaylog 的更新事件并执行。
MySQL 的主从复制有两种复制方式,分别是 异步复制 和 半同步复制:
异步复制
MySQL 默认的主从复制方式就是异步复制,因为 Master 根本不考虑数据是否达到了 Slave,或 Slave 是否成功执行。
如过需要实现完全同步方式,即 Master 需要等待一个或所有 Slave 执行成功后才响应成功,那集群效率可想而知。故 MySQL 5.6 之后出现了一种折中的方式——半同步。
半同步复制
一主一从,一主多从情况下,Master 节点只要确认至少有一个 Slave 接受到了事务,即可向发起请求的客户端返回执行成功的操作。同时 Master 是不需要等待 Slave 成功执行完这个事务,Slave 节点接受到这个事务,并成功写入到本地 relay 日志中就算成功。
另外,在半同步复制时,如果主库的一个事务提交成功了,在推送到从库的过程当中,从库宕机了或网络故障,导致从库并没有接收到这个事务的Binlog,此时主库会等待一段时间(这个时间由rpl_semi_sync_master_timeout的毫秒数决定),如果这个时间过后还无法推送到从库,那 MySQL 会自动从半同步复制切换为异步复制,当从库恢复正常连接到主库后,主库又会自动切换回半同步复制。
半同步复制的“半”体现在,虽然主从库的Binlog是同步的,但主库不会等待从库执行完Relay-log后才返回,而是确认从库接收到Binlog,达到主从Binlog同步的目的后就返回了,所以从库的数据对于主库来说还是有延时的,这个延时就是从库执行Relay-log的时间。所以只能称为半同步。
问题 :
1)主库宕机后,数据可能丢失。
2)从库只有一个sql Thread,主库写压力大,复制很可能延时。
**解决: **
1)半同步复制:确保事务提交后 binlog 至少传输到一个从库 ,解决数据丢失的问题。
2)并行复制:从库多线程apply binlog,解决从库复制延迟的问题。
超大的分页一般从两个方向上来解决.
解决超大分页,其实主要是靠缓存,可预测性的提前查到内容,缓存至redis等k-V数据库中,直接返回即可
总之,在数据量大一些的情况下,用自增主键性能会好一些。
关于主键是聚簇索引,如果没有主键,InnoDB会选择一个唯一键来作为聚簇索引,如果没有唯一键,会生成一个隐式的主键。
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null -- 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询: select id from t where num=0 复制代码
3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20 -- 可以这样查询: select id from t where num=10 union all select id from t where num=20 复制代码
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3) -- 对于连续的数值,能用 between 就不要用 in 了: select id from t where num between 1 and 3 复制代码
6.下面的查询也将导致全表扫描:select id from t where name like ‘%李%’若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num -- 可以改为强制查询使用索引: select id from t with(index(索引名)) where num=@num 复制代码
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100 -- 应改为: select id from t where num=100*2 复制代码
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’ -- name以abc开头的id应改为: select id from t where name like ‘abc%’ 复制代码
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
优化原则:减少系统瓶颈,减少资源占用,增加系统的反应速度。
将字段很多的表分解成多个表
增加中间表
增加冗余字段
注意:
冗余字段的值在一个表中修改了,就要想办法在其他表中更新,否则就会导致数据不一致的问题。
当MySQL单表记录数过大时,数据库的CRUD性能会明显下降,一些常见的优化措施如下:
还有就是通过分库分表的方式进行优化,主要有垂直分区、垂直分表和水平分区、水平分表
适用场景
缺点
《Java工程师修炼之道》的作者推荐 尽量不要对数据进行分片,因为拆分会带来逻辑、部署、运维的各种复杂度 ,一般的数据表在优化得当的情况下支撑千万以下的数据量是没有太大问题的。如果实在要分片,尽量选择客户端分片架构,这样可以减少一次和中间件的网络I/O。
适用场景
水平切分的缺点
事务支持 分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的。但是良好的设计和切分却可以减少此类情况的发生。解决这一问题的普遍做法是分两次查询实现。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据。 分库分表方案产品
跨节点的count,order by,group by以及聚合函数问题 这些是一类问题,因为它们都需要基于全部数据集合进行计算。多数的代理都不会自动处理合并工作。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多。但如果结果集很大,对应用程序内存的消耗是一个问题。
数据迁移,容量规划,扩容等问题 来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由. 一些常见的主键生成策略
跨分片的排序分页问题
一般来讲,分页时需要按照指定字段进行排序。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片,而当排序字段非分片字段的时候,情况就会变得比较复杂了。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户。如下图所示: