在当今云计算时代,不同类型的业务对高弹性、高可用性和可扩展性的需求越来越强烈,按需使用资源成为企业所需要的关键功能。为了满足这些需求,云原生数据库的Serverless化已经成为云数据库发展的重要方向之一。
过去,云数据库的发展经历了几个时代。在1.0时代,主要侧重于提供云托管的数据库服务,使用户能够将数据库迁移到云中,但管理仍然需要一定程度的关注。在2.0时代,随着容器技术的发展,出现了容器架构的云原生数据库,使数据库能够更好地与容器和微服务一起工作,实现更灵活的部署和管理。
然而,3.0时代正在迅速到来,云Serverless数据库将成为主流趋势。Serverless数据库将进一步解放用户,让他们无需关心底层基础设施的管理。这种模型下,用户只需关注数据和应用逻辑,而云服务提供商会自动处理底层的资源管理、扩展性和备份等任务。这不仅可以提高开发效率,还可以降低成本,因为资源使用是按需付费的。
腾讯云数据库的"TDSQL-C Serverless"新版本的发布,标志着云原生数据库的Serverless化进程已经进入全面推进的阶段。这个趋势将继续推动云数据库的创新,满足不断变化的业务需求,为企业提供更强大、更灵活的数据库解决方案。
新升级的TDSQL-C推出全球首个可释放存储架构的Serverless服务。当前,业内的Serverless无法完全做到不使用不付费,一般实例暂停后仍然会收取高昂的存储费用,可释放存储将彻底解决这一问题。当实例暂停后,数据会进行归档存储,用户无需再为高额的分布式存储进行付费,可在原实例暂停后的存储费用上降低成本80%。
看到这里小伙伴们已经非常迫不及待了吧?跟着狮子来体验一下这个产品的性能是否真如介绍那样优秀叭!!!
本次我们使用python 语言 进行TDSQL Serverless MySQL 进行体验, 实现思路如下:
- 读取多个本地的 excel 文件 ,并将读取的数据存储到TDSQL 中
- 从TDSQL 读取存储的数据
- 将读取的数据生成词云图,并展示;
点击链接进入腾讯云 腾讯云链接 注册并登录
在搜索框输入 TDSQL-C MYSQL 版 , 点击搜索
注意 选择Serverless 的实例形态哦!!!
将外部读写地址开启
点击集群的登录按钮
拉取完相关资源文件后,来实操一把,项目目录结构如下:
def excelTomysql(): path = '词频' # 文件所在文件夹 files = [path + "/" + i for i in os.listdir(path)] # 获取文件夹下的文件名,并拼接完整路径 for file_path in files: print(file_path) filename = os.path.basename(file_path) table_name = os.path.splitext(filename)[0] # 使用文件名作为表名,去除文件扩展名 # 使用pandas库读取Excel文件 data = pd.read_excel(file_path, engine="openpyxl", header=0) # 假设第一行是列名 columns = {col: "VARCHAR(255)" for col in data.columns} # 动态生成列名和数据类型 create_table(table_name, columns) # 创建表 save_to_mysql(data, table_name) # 将数据保存到MySQL数据库中,并使用文件名作为表名 print(filename + ' uploaded and saved to MySQL successfully')
def create_table(table_name, columns): # 建立MySQL数据库连接 conn = pymysql.connect(**db_config) cursor = conn.cursor() # 组装创建表的 SQL 查询语句 query = f"CREATE TABLE IF NOT EXISTS {table_name} (" for col_name, col_type in columns.items(): query += f"{col_name} {col_type}, " query = query.rstrip(", ") # 去除最后一个逗号和空格 query += ")" # 执行创建表的操作 cursor.execute(query) # 提交事务并关闭连接 conn.commit() cursor.close() conn.close()
def save_to_mysql(data, table_name): # 建立MySQL数据库连接 conn = pymysql.connect(**db_config) cursor = conn.cursor() # 将数据写入MySQL表中(假设数据只有一个Sheet) for index, row in data.iterrows(): query = f"INSERT INTO {table_name} (" for col_name in data.columns: query += f"{col_name}, " query = query.rstrip(", ") # 去除最后一个逗号和空格 query += ") VALUES (" values = tuple(row) query += ("%s, " * len(values)).rstrip(", ") # 动态生成值的占位符 query += ")" cursor.execute(query, values) # 提交事务并关闭连接 conn.commit() cursor.close() conn.close()
def query_data(): # 建立MySQL数据库连接 conn = pymysql.connect(**db_config) cursor = conn.cursor() # 查询所有表名 cursor.execute("SHOW TABLES") tables = cursor.fetchall() data = [] dic_list = [] table_name_list = [] for table in tables: # for table in [tables[-1]]: table_name = table[0] table_name_list.append(table_name) query = f"SELECT * FROM {table_name}" # # 执行查询并获取结果 cursor.execute(query) result = cursor.fetchall() if len(result) > 0: columns = [desc[0] for desc in cursor.description] table_data = [{columns[i]: row[i] for i in range(len(columns))} for row in result] data.extend(table_data) dic = {} for i in data: dic[i['word']] = float(i['count']) dic_list.append(dic) conn.commit() cursor.close() conn.close() return dic_list, table_name_list
if __name__ == '__main__': ##excelTomysql()方法将excel写入到mysql excelTomysql() print("excel写入到mysql成功!") # query_data()方法将mysql中的数据查询出来,每张表是一个dic,然后绘制词云 result_list, table_name_list = query_data() print("从mysql获取数据成功!") for i in range(len(result_list)): maskImage = np.array(Image.open('background.PNG')) # 定义词频背景图 # 定义词云样式 wc = wordcloud.WordCloud( font_path='PingFangBold.ttf', # 设置字体 mask=maskImage, # 设置背景图 max_words=500, # 最多显示词数 max_font_size=100) # 字号最大值 # 生成词云图 wc.generate_from_frequencies(result_list[i]) # 从字典生成词云 # 保存图片到指定文件夹 wc.to_file("词云图/{}.png".format(table_name_list[i])) print("生成的词云图【{}】已经保存成功!".format(table_name_list[i] + '.png')) # 在notebook中显示词云图 plt.imshow(wc) # 显示词云 plt.axis('off') # 关闭坐标轴 plt.show() # 显示图像
import pymysql import pandas as pd import os import wordcloud import numpy as np from PIL import Image import matplotlib.pyplot as plt # MySQL数据库连接配置 db_config = { 'host': "gz-xxxxxxysql-grp-kb212sal.sql.tencentcdb.com", # 主机名 'port': 25648, # 端口 'user': "root", # 账户 'password': "TDSQL-C@!@Rgpk14.", # 密码 'database': 'db0', } def create_table(table_name, columns): # 建立MySQL数据库连接 conn = pymysql.connect(**db_config) cursor = conn.cursor() # 组装创建表的 SQL 查询语句 query = f"CREATE TABLE IF NOT EXISTS {table_name} (" for col_name, col_type in columns.items(): query += f"{col_name} {col_type}, " query = query.rstrip(", ") # 去除最后一个逗号和空格 query += ")" # 执行创建表的操作 cursor.execute(query) # 提交事务并关闭连接 conn.commit() cursor.close() conn.close() def excelTomysql(): path = '词频' # 文件所在文件夹 files = [path + "/" + i for i in os.listdir(path)] # 获取文件夹下的文件名,并拼接完整路径 for file_path in files: print(file_path) filename = os.path.basename(file_path) table_name = os.path.splitext(filename)[0] # 使用文件名作为表名,去除文件扩展名 # 使用pandas库读取Excel文件 data = pd.read_excel(file_path, engine="openpyxl", header=0) # 假设第一行是列名 columns = {col: "VARCHAR(255)" for col in data.columns} # 动态生成列名和数据类型 create_table(table_name, columns) # 创建表 save_to_mysql(data, table_name) # 将数据保存到MySQL数据库中,并使用文件名作为表名 print(filename + ' uploaded and saved to MySQL successfully') def save_to_mysql(data, table_name): # 建立MySQL数据库连接 conn = pymysql.connect(**db_config) cursor = conn.cursor() # 将数据写入MySQL表中(假设数据只有一个Sheet) for index, row in data.iterrows(): query = f"INSERT INTO {table_name} (" for col_name in data.columns: query += f"{col_name}, " query = query.rstrip(", ") # 去除最后一个逗号和空格 query += ") VALUES (" values = tuple(row) query += ("%s, " * len(values)).rstrip(", ") # 动态生成值的占位符 query += ")" cursor.execute(query, values) # 提交事务并关闭连接 conn.commit() cursor.close() conn.close() def query_data(): # 建立MySQL数据库连接 conn = pymysql.connect(**db_config) cursor = conn.cursor() # 查询所有表名 cursor.execute("SHOW TABLES") tables = cursor.fetchall() data = [] dic_list = [] table_name_list = [] for table in tables: # for table in [tables[-1]]: table_name = table[0] table_name_list.append(table_name) query = f"SELECT * FROM {table_name}" # # 执行查询并获取结果 cursor.execute(query) result = cursor.fetchall() if len(result) > 0: columns = [desc[0] for desc in cursor.description] table_data = [{columns[i]: row[i] for i in range(len(columns))} for row in result] data.extend(table_data) dic = {} for i in data: dic[i['word']] = float(i['count']) dic_list.append(dic) conn.commit() cursor.close() conn.close() return dic_list, table_name_list if __name__ == '__main__': ##excelTomysql()方法将excel写入到mysql excelTomysql() print("excel写入到mysql成功!") # query_data()方法将mysql中的数据查询出来,每张表是一个dic,然后绘制词云 result_list, table_name_list = query_data() print("从mysql获取数据成功!") for i in range(len(result_list)): maskImage = np.array(Image.open('background.PNG')) # 定义词频背景图 # 定义词云样式 wc = wordcloud.WordCloud( font_path='PingFangBold.ttf', # 设置字体 mask=maskImage, # 设置背景图 max_words=500, # 最多显示词数 max_font_size=100) # 字号最大值 # 生成词云图 wc.generate_from_frequencies(result_list[i]) # 从字典生成词云 # 保存图片到指定文件夹 wc.to_file("词云图/{}.png".format(table_name_list[i])) print("生成的词云图【{}】已经保存成功!".format(table_name_list[i] + '.png')) # 在notebook中显示词云图 plt.imshow(wc) # 显示词云 plt.axis('off') # 关闭坐标轴 plt.show() # 显示图像
复制延迟: 主从复制中,从服务器复制主服务器上的数据。由于网络延迟、大事务、复杂查询等原因,从服务器上的数据可能会滞后于主服务器,造成数据不一致。
单点故障: 主从复制架构中,主服务器是关键的单点。如果主服务器发生故障,从服务器无法继续同步数据,可能需要进行手动切换以恢复。
数据一致性: 由于复制延迟等原因,从服务器上的数据可能不是实时更新的,这可能会导致应用程序在读取从服务器时获得不一致的结果。
写入压力集中: 所有写入操作都要发送到主服务器,可能会导致主服务器成为性能瓶颈,尤其是在高写入负载下。
复制链路故障: 如果主从复制链路遇到故障,可能会导致从服务器无法正常复制数据,需要进行手动干预来修复。
数据冲突: 如果在主从复制架构中同时进行写入操作,可能会导致数据冲突和不一致,需要谨慎处理。
拓扑复杂性: 在复杂的应用场景中,可能涉及多个主服务器和从服务器,管理和维护这些服务器的拓扑关系可能会变得复杂。
备份和恢复: 备份和恢复可能会变得复杂,需要确保备份不会影响主从复制的正常运行。
数据处理能力不均衡: 由于主从复制是单向的,从服务器无法直接处理写入操作,可能导致主服务器和从服务器之间的数据处理能力不均衡。
在传统的 MySQL 主从复制架构的基础上进行了创新,带来了许多优势:
性能与扩展性: 基于全新架构 HTAP 能力,基于列的数据存储和查询处理,与面向行的传统存储相比,最多可实现十倍以上的查询性能提升,计算与存储分离架构使得计算节点和存储节点可以独立扩展。这意味着可以根据实际需求,独立地扩展计算资源和存储资源,从而更好地适应不同的负载情况,提高了数据库的整体性能和扩展性。
资源隔离: 通过将计算和存储分开,可以更好地隔离不同的工作负载。计算节点可以专注于处理查询、分析等任务,而存储节点可以专注于数据的持久化和管理,从而降低了互相干扰的可能性。
灵活性和弹性: 由于计算和存储是独立的,可以根据需要灵活地调整计算资源和存储资源的比例。这样在负载波动较大的情况下,可以更有效地分配资源,提供更好的弹性。
降低复杂性: 传统的主从复制架构中,主从之间需要保持同步,管理复杂。计算与存储分离架构简化了复制和同步的逻辑,减少了复杂性和潜在的问题。
高可用性: 由于计算和存储是分离的,可以更容易地实现计算节点和存储节点的高可用性。在某个节点发生故障时,可以更快速地进行故障转移或恢复。
资源利用率: 通过独立扩展计算和存储节点,可以更有效地利用资源。例如,可以根据查询和分析的需求,灵活地配置计算资源,从而提高资源利用率。
云原生时代,面对海量数据的存储,高并发负载和复杂查询等场景,这样的数据库出现,你爱了吗?
更多活动可继续关注上方🦁的博客,好运总会轮到你!!!