【作者主页】:吴秋霖
【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作!
【作者推荐】:对JS逆向感兴趣的朋友可以关注《爬虫JS逆向实战》,对分布式爬虫平台感兴趣的朋友可以关注《分布式爬虫平台搭建与开发实战》
还有未来会持续更新的验证码突防、APP逆向、Python领域等一系列文章
Scrapy是爬虫非常经典的一个框架,深受开发者喜爱!因其简洁高效的设计,被广泛选用于构建强大的爬虫工程。很多人会选择使用它来开发自己的爬虫工程。今天我将用一个论坛网站的示例来全面讲述Scrapy框架的使用
以前都是底层开始,现在不一样了,一上来都是框架。导致很多人是知其然,但不知其所以然。而忽略了底层原理的理解
目标网站(感兴趣的可以练练手):
aHR0cHM6Ly9mb3J1bS5heGlzaGlzdG9yeS5jb20v
这是一个国外的BBS论坛,随手挑的一个曾经写过的案例。前几年做舆情相关的项目,写的爬虫真的是很多,境内外社交媒体、论坛、新闻资讯
首先,我们打开这个网站,这个网站是要登陆的。我们先解决登陆这块,简单的构造一下登陆请求抓个包分析一下:
上图就是登陆请求提交的参数,接下来我们需要在Scrapy爬虫工程的Spider中构造并实现登陆功能
参数都都是明文的比较简单,唯一的一个sid也不是加密生成的,在HTML中就能够拿到
很多时候一些接口某些参数,你看起来是密文,但是并不一定就是加密算法生成的,很有可能在HTML或者其它接口响应中就能获取的到
sid获取如下:
现在我们开始编写Scrapy爬虫中登陆的这部分代码,实现代码如下所示:
def parse(self, response): text = response.headers['Set-Cookie'] pa = re.compile("phpbb3_lzhqa_sid=(.*?);") sid = pa.findall(text)[0] response.meta['sid'] = sid login_url = 'https://forum.axishistory.com/ucp.php?mode=login' yield Request(login_url, meta=response.meta, callback=self.parse_login) def parse_login(self, response): sid=response.meta['sid'] username ='用户名' password = '密码' formdata = { "username": username, "password": password, "sid": sid, "redirect": "index.php", "login": "Login", } yield FormRequest.from_response(response, formid='login', formdata=formdata, callback=self.parse_after_login)
首先我们它通过parse函数从start_urls请求所响应的response中获取sid的值,然后继续交给parse_login的登陆函数实现模拟登陆
另外说一下formid这个参数,在HTML文档中,表单通常通过标签定义,并且可以包含id属性,这个id属性就是表单的ID,如下一个HTML的示例:
在上面的这个例子中,标签有一个id属性,其值为“login”。所以,formid这个参数用于指定表单,去构造登陆提交请求
登陆处理完以后,我们就可以使用Scrapy爬虫继续对列表跟详情页构造请求并解析数据,这一部分的无非就是写XPATH规则了,基本对技术的要求并不高,如下使用XPATH测试工具编写列表页链接提取的规则:
Scrapy列表页代码实现如下:
def parse_page_list(self, response): pagination = response.meta.get("pagination", 1) details = response.xpath("//div[@class='inner']/ul/li") for detail in details: replies = detail.xpath("dl/dd[@class='posts']/text()").extract_first() views = detail.xpath("dl/dd[@class='views']/text()").extract_first() meta = response.meta meta["replies"] = replies meta["views"] = views detail_link = detail.xpath("dl//div[@class='list-inner']/a[@class='topictitle']/@href").extract_first() detail_title = detail.xpath("dl//div[@class='list-inner']/a[@class='topictitle']/text()").extract_first() meta["detail_title"] = detail_title yield Request(response.urljoin(detail_link), callback=self.parse_detail, meta=response.meta) next_page = response.xpath("//div[@class='pagination']/ul/li/a[@rel='next']/@href").extract_first() if next_page and pagination < self.pagination_num: meta = response.meta meta['pagination'] = pagination+1 yield Request(response.urljoin(next_page), callback=self.parse_page_list, meta=meta)
self.pagination_num是一个翻页最大采集数的配置,这个自行设定即可
通过列表页我们拿到了所有贴文的链接,我们并在代码的最后使用了yield对列表页发起了请求,callback=self.parse_detail交给解析函数去提取数据
首先我们定义在项目的items.py文件中定义Item数据结构,主要帖子跟评论的,如下所示:
class AccountItem(Item): account_url = Field() # 账号url account_id = Field() # 账号id account_name = Field() # 账号名称 nick_name = Field() # 昵称 website_name = Field() # 论坛名 account_type = Field() # 账号类型,固定forum level = Field() # 账号等级 account_description = Field() # 账号描述信息 account_followed_num = Field() # 账号关注数 account_followed_list = Field() # 账号关注id列表 account_focus_num = Field() # 账号粉丝数 account_focus_list = Field() # 账号粉丝id列表 regist_time = Field() # 账号注册时间 forum_credits = Field() # 论坛积分/经验值 location = Field() # 地区 post_num = Field() # 发帖数 reply_num = Field() # 跟帖数 msg_type = Field() area = Field() class PostItem(Item): type = Field() # "post" post_id = Field() # 帖子id title = Field() # 帖子标题 content = Field() # 帖子内容 website_name = Field() # 论坛名 category = Field() # 帖子所属版块 url = Field() # 帖子url language = Field() # 语种, zh_cn|en|es release_time = Field() # 发布时间 account_id = Field() # 发帖人id account_name = Field() # 发帖人账号名 page_view_num = Field() # 帖子浏览数 comment_num = Field() # 帖子回复数 like_num = Field() # 帖子点赞数 quote_from =Field() # 被转载的帖子id location_info = Field() # 发帖地理位置信息 images_url = Field() # 帖子图片链接 image_file = Field() # 帖子图片存储路径 msg_type = Field() area = Field() class CommentItem(Item): type = Field() # "comment" website_name = Field() # 论坛名 post_id = Field() comment_id = Field() content = Field() # 回帖内容 release_time = Field() # 回帖时间 account_id = Field() # 帖子回复人id account_name = Field() # 回帖人名称 comment_level = Field() # 回帖层级 parent_id = Field() # 回复的帖子或评论id like_num = Field() # 回帖点赞数 comment_floor = Field() # 回帖楼层 images_url = Field() # 评论图片链接 image_file = Field() # 评论图片存储路径 msg_type = Field() area = Field()
接下来我们需要编写贴文内容的数据解析代码,解析函数代码实现如下所示:
def parse_detail(self, response): dont_parse_post = response.meta.get("dont_parse_post") category = " < ".join(response.xpath("//ul[@id='nav-breadcrumbs']/li//span[@itemprop='title']/text()").extract()[1:]) if dont_parse_post is None: msg_ele = response.xpath("//div[@id='page-body']//div[@class='inner']")[0] post_id = msg_ele.xpath("div//h3/a/@href").extract_first(default='').strip().replace("#p", "") post_item = PostItem() post_item["url"] = response.url post_item['area'] = self.name post_item['msg_type'] = u"贴文" post_item['type'] = u"post" post_item["post_id"] = post_id post_item["language"] = 'en' post_item["website_name"] = self.allowed_domains[0] post_item["category"] = category post_item["title"] = response.meta.get("detail_title") post_item["account_name"] = msg_ele.xpath("div//strong/a[@class='username']/text()").extract_first(default='').strip() post_item["content"] = "".join(msg_ele.xpath("div//div[@class='content']/text()").extract()).strip() post_time = "".join(msg_ele.xpath("div//p[@class='author']/text()").extract()).strip() post_item["release_time"] = dateparser.parse(post_time).strftime('%Y-%m-%d %H:%M:%S') post_item["collect_time"] = dateparser.parse(str(time.time())).strftime('%Y-%m-%d %H:%M:%S') user_link =msg_ele.xpath("div//strong/a[@class='username']/@href").extract_first(default='').strip() account_id = "".join(re.compile("&u=(\d+)").findall(user_link)) post_item["account_id"] = account_id post_item["comment_num"] = response.meta.get("replies") post_item["page_view_num"] = response.meta.get("views") images_urls = msg_ele.xpath("div//div[@class='content']//img/@src").extract() or "" post_item["images_url"] = [response.urljoin(url) for url in images_urls] post_item["image_file"] = self.image_path(post_item["images_url"]) post_item["language"] = 'en' post_item["website_name"] = self.name response.meta["post_id"] = post_id response.meta['account_id'] = post_item["account_id"] response.meta["account_name"] = post_item["account_name"] full_user_link = response.urljoin(user_link) yield Request(full_user_link, meta=response.meta, callback=self.parse_account_info) for comment_item in self.parse_comments(response): yield comment_item comment_next_page = response.xpath(u"//div[@class='pagination']/ul/li/a[@rel='next']/@href").extract_first() if comment_next_page: response.meta["dont_parse_post"] = 1 next_page_link = response.urljoin(comment_next_page) yield Request(next_page_link, callback=self.parse_detail, meta=response.meta)
贴文内容的下方就是评论信息,上面代码中我们拿到评论的链接comment_next_page,直接继续发送请求解析评论内容:
def parse_comments(self, response): comments = response.xpath("//div[@id='page-body']//div[@class='inner']") if response.meta.get("dont_parse_post") is None: comments = comments[1:] for comment in comments: comment_item = CommentItem() comment_item['type'] = "comment" comment_item['area'] = self.name comment_item['msg_type'] = u"评论" comment_item['post_id'] = response.meta.get("post_id") comment_item["parent_id"] = response.meta.get("post_id") comment_item["website_name"] = self.allowed_domains[0] user_link =comment.xpath("div//strong/a[@class='username']/@href").extract_first(default='').strip() account_id = "".join(re.compile("&u=(\d+)").findall(user_link)) comment_item['comment_id'] = comment.xpath("div//h3/a/@href").extract_first(default='').strip().replace("#p","") comment_item['account_id'] = account_id comment_item['account_name'] = comment.xpath("div//strong/a[@class='username']/text()").extract_first(default='').strip() comment_time = "".join(comment.xpath("div//p[@class='author']/text()").extract()).strip() if not comment_time: continue comment_level_text = comment.xpath("div//div[@id='post_content%s']//a[contains(@href,'./viewtopic.php?p')]/text()" % comment_item['comment_id']).extract_first(default='') comment_item['comment_level'] = "".join(re.compile("\d+").findall(comment_level_text)) comment_item['release_time'] = dateparser.parse(comment_time).strftime('%Y-%m-%d %H:%M:%S') comment_content_list = "".join(comment.xpath("div//div[@class='content']/text()").extract()).strip() comment_item['content'] = "".join(comment_content_list) response.meta['account_id'] = comment_item["account_id"] response.meta["account_name"] = comment_item["account_name"] full_user_link = response.urljoin(user_link) yield Request(full_user_link, meta=response.meta, callback=self.parse_account_info)
评论信息采集中还有一个针对评论用户信息采集的功能,通过调用parse_account_info函数进行采集,实现代码如下所示:
def parse_account_info(self, response): about_item = AccountItem() about_item["account_id"] = response.meta["account_id"] about_item["account_url"] = response.url about_item["account_name"] = response.meta["account_name"] about_item["nick_name"] = "" about_item["website_name"] = self.allowed_domains[0] about_item["account_type"] = "forum" about_item["level"] = "" account_description = "".join(response.xpath("//div[@class='inner']/div[@class='postbody']//text()").extract()) about_item["account_description"] = account_description about_item["account_followed_num"] = "" about_item["account_followed_list"] = "" about_item["account_focus_num"] = "" about_item["account_focus_list"] = "" regist_time = "".join(response.xpath("//dl/dt[text()='Joined:']/following-sibling::dd[1]/text()").extract()) about_item["regist_time"] = dateparser.parse(regist_time).strftime('%Y-%m-%d %H:%M:%S') about_item["forum_credits"] = "" location = "".join(response.xpath("//dl/dt[text()='Location:']/following-sibling::dd[1]/text()").extract()) about_item["location"] = location post_num_text = response.xpath("//dl/dt[text()='Total posts:']/following-sibling::dd[1]/text()[1]").extract_first(default='') post_num = post_num_text.replace(",",'').strip("|").strip() about_item["post_num"] = post_num about_item["reply_num"] = "" about_item["msg_type"] = 'account' about_item["area"] = self.name yield about_item
最后从帖子到评论再到账号信息,层层采集与调用拿到完整的一个JSON结构化数据,进行yield到数据库
因为是国外的论坛网站案例,所以这里我们需要使用我们的Middleware来解决这个问题:
class ProxiesMiddleware(): logfile = logging.getLogger(__name__) def process_request(self, request, spider): self.logfile.debug("entry ProxyMiddleware") try: # 依靠meta中的标记,来决定是否需要使用proxy proxy_addr = spider.proxy if proxy_addr: if request.url.startswith("http://"): request.meta['proxy'] = "http://" + proxy_addr # http代理 elif request.url.startswith("https://"): request.meta['proxy'] = "https://" + proxy_addr # https代理 except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] self.logfile.warning(u"Proxies error: %s, %s, %s, %s" % (exc_type, e, fname, exc_tb.tb_lineno))
settings文件中配置开启Middleware:
DOWNLOADER_MIDDLEWARES = { 'forum.middlewares.ProxiesMiddleware': 100, }
好了,到这里又到了跟大家说再见的时候了。创作不易,帮忙点个赞再走吧。你的支持是我创作的动力,希望能带给大家更多优质的文章